
STAR: A Comparison of Points-To Analysis
Algorithms

Kanchan Arora

 M.Tech, Indraprastha Institute of Information Technology

New Delhi, India

Abstract— Pointer analysis is a static program analysis which
aims to determine memory locations that a pointer variable
can refer to. Pointer Analysis has a rich literature and variety
of applications. In this paper, firstly an introduction to pointer

analysis is presented and then four algorithms: Steensgaard,

RefinemenT-based, Andersen, Rinard’s algorithm is analysed
deeply and finally comparison of these four analyses based on
certain parameters is provided.

Keywords— Points-to Analysis, Flow-Sensitivity, Context-
Sensitivity, Pointers, Program Analysis

I. INTRODUCTION

One of the most important challenges which computer
science is facing today is the size and complexity of modern
software. With the increase in size and complexity,
software is becoming more difficult to understand, more
difficult to promise correct, and more difficult to optimize.
Program analysis is a key tool to manage this complexity. It
has been used for such diverse purposes as model checking,
security analysis, error-checking, compiler-optimization [7],
hardware synthesis, software refactoring and parallelization.

This paper describes the contributions of a set of research
works and papers. In the second section some terminologies
are shown to help understand program analysis and pointer
analysis. In second section, all the selected analyses are
analysed. In the third section, comparison of all the
described analysis based on some facets is presented. In the
fourth section, conclusions about each analysed algorithm
are stated.

II. TERMINOLOGIES

Program analysis is the process of analysing the
behaviour of programs for its correctness and robustness.
Analysis should be efficient as it aims at ensuring that the
program does what it is supposed to do and at the same time
reducing the resource usage. It becomes more difficult to
analyse when a program contains indirection. Indirection
can be indirect data-flow or indirect control-flow. All types
of indirections are implemented by using pointers and that
is where pointer analysis comes into picture. The objective
of pointer-analysis is to resolve this indirection by
computing points-to-sets for each program entity. Points-to-
set is the set of all the memory locations that can be
indirectly referenced by that entity. For example in the
program shown in Fig.1, the points to relation is { pp→p,
p→b, qq→q, q→b } where → stands for points-to.

Fig.1 Example program for points-to analysis

The indirection present in the program must be resolved
as precisely as possible. Here precision means the points-to
sets should be as small as possible. The more precisely the
indirection is solved, the more effective program analysis
will be.

Pointer analysis, like most static analyses, is an un-
decidable problem [1]. It is complex and multi-dimensional.
Dimensions of pointer analysis are flow sensitivity, context-
sensitivity and definiteness which are explained below:

A. Flow-Sensitivity

A flow-sensitive[10] program analysis computes for each
program point what memory locations pointer expressions
may refer to whereas flow-insensitive[9] pointer analysis
computes what memory locations pointer expressions may
refer to, at any time in program execution. Table 1 shows
an example program to clearly differentiate between the
two.

 TABLE I
FLOW-SENSITIVITY

Flow Insensitive Flow Sensitive
int main(void)
{
int x, y, *p;
p = & x;
/* (p ->x),(p->y) */
foo(p);
p = & y

 /*(p ->x),(p->y)*/
 }

int main(void)
{
int x, y, *p;
p = & x;
/* (p ->x) */
foo(p);
p = & y
/*(p->y)*/

 }

main()
{
int a, b,*p,*q,**pp,**qq;
p=&a;
q=&b;
pp=&p;
qq=&q;
*pp=&b;
return 0;
}

Kanchan Arora / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 446-451

www.ijcsit.com 446

B. Context-Sensitivity

Analysis is context-sensitive [2],[8] if each invocation is
kept separated from other invocations whereas analysis is
context-insensitive if all the calling contexts are merged and
analysed together. Let us examine the following code:

int g;
int main()
{
int a;
C1: foo(&g,1)
C2: foo(&a,3)
}
foo(int * p, int q)
{
int r;
*p=q;
 r = *p+ 5;
 }

 Fig. 2 Example program for context-sensitivity

Analysis of this code will be p = &g; q = 1; p= &a; q =
3;*p = q; r = g+5. When we analyze context-insensitively,
the interaction of p=&g from call site C1 and q=3 from call
site C3 produces two spurious results g=3 and r=8.
Evidently context-sensitivity is crucial for precise pointer
analysis.

Flow- and context-sensitivity are independent of each
other; an analysis can be either flow-sensitive or flow-
insensitive and at the same time either context-sensitive or
context-insensitive.

C. Definiteness

Points-to analysis (Alias analysis) can be must-alias or
may-alias. May-Alias is aliasing that may occur during
execution. Must-Alias is aliasing that will definitely occur
during execution. For example, consider the section of
code that shown in Fig. 3 accesses members of structures:

x.a = 1;
y.a = 2;
i = x.a + 3;

 Fig. 3 Example for alias analysis

There are following three possible cases:
1. The variables x and y cannot alias (i.e. never point

to the same memory location).
2. The variables x and y must alias (i.e. always point

to the same memory location).
3. It cannot be determined at compile time that

whether x and y alias or not.

If x and y cannot alias, then i = x.a + 3; can be changed
to i = 4. If x and q must alias, then i = x.a + 3; can be
changed to i = 5 because x.a + 3 =y.a + 3. In both cases, we
are able to perform optimizations from the alias knowledge.
On the other hand, if it is not known if x and y alias or not,
then no optimizations can be performed and the whole of
the code must be executed to get the result. Two memory

references are said to have a may-alias relation if their
aliasing is unknown.

III. ANALYSES SELECTED

This section describes the four selected analyses and key
features of algorithms used are highlighted.

A. Andersen Analysis

Andersen analysis [3] is a context-insensitive and flow-
insensitive points-to analysis. The algorithm used by
Andersen is briefly explained below:

1) The algorithm examines statements that create
pointers, one by one in any order as the algorithm is flow
insensitive.

2) Each statement updates the points-to graph if it can
create new points-to relationships.

3) Six kinds of statements are considered:
• p = &a;
• p = q;
• p = *r;
• *p = &a;
• *p = q;
• *p = *r;
4) For each statement points to graph is updated in the

following way:
 a) p = &a: an arc from p to a is added which shows that

p can point to a.(Fig. 4)

Fig. 4 Points-to graph for p=&a

b) p = q: Arcs from p to everything q points to are
added in the graph. If new arcs from q are later
added, corresponding arcs from p are also added
(iterative algorithm).(Fig. 5)

Fig. 5 Points-to graph for p=q

c) p = *r;
Let S be all the nodes r points to. Let T be all the nodes

members of S point to. Arcs from p to all nodes in T are
added. If later pointer assignments increase S or T, new arcs
from p mare also added.(Fig. 6)

Fig. 6 Points-to graph for p=*r

p

d

f

e

a

r
c

b

p a

b

c

q

p a

Kanchan Arora / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 446-451

www.ijcsit.com 447

d) *p = &a;
An arc to node a from all nodes which p points to is

added. If new arcs from p are later added, new arcs to a are
added.(Fig. 7)

 Fig.7 Points-to graph for *p=&a

e) *p = q;
Nodes pointed to by p are linked to all nodes pointed to

by q. If later pointer assignments add arcs from p or q,
relevant arcs are also added.(Fig. 8)

Fig. 8 Points-to graph for *p=q

f) *p = *r;
Let S be all the nodes r points to. Let T be all the nodes

members of S point to. Arcs from all nodes p points to all
nodes in T are added. If later pointer assignments increase S
or T or link new nodes to p, new arcs are added.(Fig. 9)

Fig. 9 Points-to graph for *p=*r

Andersen’s Analysis is precise but slow. It can require
O(n3) time (where n is the number of nodes in the points-to
graph). For example statement like p = *q can force the
algorithm to visit n2 nodes (q may point to n nodes and each
of these nodes may point to n nodes). The number of
pointer statements analyzed can be O(n), leading to an O(n3)
execution time. Andersen’s analysis for large programs is
complex. Therefore, it should be used for small programs.

B. Steensgaard Analysis

Since Andersen’s analysis was non-linear in time, a fast
and accurate analysis which runs in linear time for large
programs was required. Steensgaard offered such algorithm
(PTA). PTA (Points-To Analysis) algorithm used
Andersen’s approach only with the difference that merging
of nodes takes place if any pointer can reference both.

 In Andersen’s Analysis points-to graph of p=&a; p=&b
may be as shown in Fig. 10

Fig. 10 Andersen’s points-to graph

But in Steensgaard analysis points-to graph will be:

Fig.11 Steensgaard’s points-to graph

Steensgaard’s Algorithm is sometimes less accurate than
Andersen’s Algorithm. For example in Fig. 12, the points-
to graph, created by Andersen’s algorithm, shows that p
may point to a or b whereas q may only point to b:

Fig. 12 Andersen’s graph

In Steensgaard’s Algorithm the points-to graph will be:

Fig. 13 Steensgaard’s graph

Points-to graph in Fig. 13 is incorrectly showing that q
may point to both a and b but it actually points to only b.

This algorithm is linear time algorithm because for
statements like p = *q can’t make the algorithm visit n2
nodes, because multiple nodes referenced by the same
pointer are always merged. Therefore using this algorithm,
execution time of O(n.α(n)) which is essentially linear in n
can be achieved. By Steensgaard analysis very large
programs can be analyzed in linear time without too much
of a loss in precision.

C. Refinement-Based Analysis

Refinement based analysis [6] is a context-sensitive,
flow-insensitive and demand-driven analysis [11].
A context-sensitive analysis is an analysis that considers the
calling context when analyzing the target of a function call.
In the example code shown in Fig. 14, a context-sensitive
analyzer analyses f() (at least) twice in this program,
because it is called from two call sites. This makes it
precise, as the effects of f() are quite different each time.

p

b

q

a

d

c

c

p

b

f c

e

a d

g

h

r

p
a
b

c d

a b

q p

p

q

r

a

c
d

a
b

q p

p

a

b

Kanchan Arora / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 446-451

www.ijcsit.com 448

 int a,b;
 int *x;

void f(void)
{
 ++*x;
}
int main()
{
 x = &a;
 f();
 x = &b;
 f();
 }

Fig. 14 Example code

A context-sensitive analysis can infer that a==1 and b is
unchanged after the first call, and that both a and b are 1
after the second call. Context-sensitivity also makes the
analysis expensive. A context-insensitive analysis would
only analyze f() once, and would typically only produce
information like “f() modifies a or b, thus after any call
to f(), the contents of both these variables are unknown”.

Problem with context sensitive analysis is that it is costly
as precise and deep-context analyses may explode in
complexity. So there is a need of analysis which focuses on
preciseness in the code where it matters. Such analysis need
to handle following three key language features:

1) Assignments
2) Method Calls
3) Heap Accesses
 In the points-to graph, edges entering and exiting a

method call are labelled with open and close parentheses
specific to the call site. A path in graph with mismatched
call parentheses corresponds to an unrealizable control flow
path. A balanced-parentheses language can be used to filter
out such paths. Match edges are those edges which connect
matched field parentheses from source of open to sink of
close. Match edges can be used to skip sub-paths.

o a1 a2 a3 a4 a5
x

 Fig. 15 Points-to graph with match edges

Match edges can be removed to refine heaps and calls.
Removal of such edges is named as refinement by Bodik.
After refinement the points to graph is shown in Fig. 16:

o a1 a2 a4 a5

x

 Fig. 16 Points-to graph after refinement

Refinement based analysis requires less memory as it is
demand-driven and flow-insensitive. It is more precise and
easy to implement.

D. Rinard Analysis

While analysing multi-threaded programs, certain
questions about what location will be written by which
statement and what a particular pointer will be pointing to
in one thread and what it will point to after all the threads
are executed need to be answered. Consider the example
code in Fig. 17.

Fig. 17 Example control flow graph for multithreaded code

Analysis that answers what location is written by *p=3
and *p=1 is needed. Therefore, analysis which analyse
interaction between concurrent threads is required. Points-
to graph at each program point is as shown below:

Fig. 18 Naive approach for multithreaded code

One possible solution to analyze interactions between
concurrent threads is to analyse all possible inter-leavings
and merge results. It fails because of the exponential
complexity i.e. for n threads with S1...Sn statements
number of inter-leavings=(S1+.....+Sn)!/(S1!....Sn!).

[f [g [h]h]f]g

[f [g]g]h

p=&x;
q=&p;

*q=&y; *p=3;

*p=1;

par begin

par end

qpx

qpx

qpy

qpy

p=&x;
q=&p;

*q=&y; *p=3;

*p=1;

par begin

par end

qpx

 y

qpx

 y

Kanchan Arora / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 446-451

www.ijcsit.com 449

Rinard[5] introduced the concept of interference.
Interference means adding points-to edges created by other
concurrent threads. Rinard’s Analysis is flow sensitive and
context-sensitive data flow analysis. At each program point
data flow analysis will generate a triple <C,I,E> as data
flow information where C is the current points-to
relationships ,I is the interference information from other
threads and E is the edges created by the current thread.
Rinard’s Analysis for example code shown in Fig 17 is
shown below:

Fig. 19 Rinard’s Analysis for multithreaded code

It approximates conservatively all possible analysis of
concurrent thread statements.

IV. COMPARISON

In this section, behavior of algorithms described in
section III is compared with each other along certain
parameters as shown in the Table II.

According to the granularity of the precision of the

points-to relationship, implementation approach can be with
or without flow sensitivity and context-sensitivity. A fully
flow and context sensitivity usually cost too much time and
memory on large programs. Analysis provided by Andersen
and Steensgaard are both context and flow-insensitive while
refinement-based analysis is context-sensitive and flow –
insensitive. Rinard’s analysis takes into account both flow
and context sensitivity.

There is always a trade-off between scalability and

precision in pointer analysis. A precise analysis is more
often not scalable. Andersen and Rinard’s analysis is not
scalable but precise. Steensgaard’s analysis whereas is
scalable but not precise. Bodik’s analysis [6] is both
precise and scalable.

Andersen and Steensgaard gave the analysis for C

programming language. Bodik’s demand-driven analysis is
Java-oriented. Rinard’s algorithm is suitable for language
which support multi-threading.

 TABLE II
COMPARISON TABLE

Comparison
Parameters

Behaviour of Algorithm

Andersen Steensgaard Refinement-Based Rinard

Algorithm Type Subset-based algorithm Unification-based(PTA) Demand-driven Inference-based

Time Complexity
O(n3) where n is the

number of nodes in points-
to graph(non-linear)

O(n)-linear
For greater than 1,60,000

Statements,time taken is less
than 13 minutes

Polynomial-
time

Preciseness Precise Less precise than Andersen Precise Precise

Flow Sensitivity Flow-insensitive Flow-insensitive Flow-insensitive Flow-sensitive

Context-sensitivity Context-insensitive Context-insensitive Context-sensitive
Context-
Sensitive

Definiteness May-Analysis May-analysis Refinement-based May-analysis

Memory efficient No Yes
Yes(For greater than 1,60,000
Statements,memory required

is less than 35 MB)
Yes

Scalable

No Yes Yes No

Language Dependency C language C language Java language Java

p=&x;
q=&p;

*q=&r; *p=3;

*p=1;

par begin

par end

<qpx,Ø, qpx>

<qpx, Ø, Ø>

<qpx, py,Ø>

 y

<qpx, Ø,py>

 y

<qpy, Ø,py>

<qpy, Ø, qpx, py,Ø>

 y

Kanchan Arora / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 446-451

www.ijcsit.com 450

V. CONCLUSIONS

This paper describes a comparative study of four pointer
analyses. The major conclusions about these analyses are:

1) Andersen analysis [3] is a precise analysis but non-
linear in both time and space requirements.

2) Steensgaard analysis [4] is a linear time analysis but
provides spurious results.

3) Refinement-based analysis [6] is memory efficient
as it is demand-driven and flow-insensitive. It is
more precise and easy to implement.

4) Rinard’s analysis[5] provides a solution to
approximate conservatively all possible analysis of
concurrent thread statements.

ACKNOWLEDGMENT

I dedicate this study to my family who have always
supported me and believed that I could do it. I would like to
thank all my friends for their invaluable help and moral
support.

REFERENCES
[1] W. Landi, Undecidability of static analysis, ACM Letters on

Programming Languages and Systems, 1(4):323–337, 1992.
[2] J. Zhu, Towards scalable flow and context sensitive pointer analysis.

In Design Automation Conference, 2005. Proceedings, 42nd, pages
831-836, 2005.

[3] Lars Ole Andersen, Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994 .

[4] Bjarne Steensgaard, Points-to analysis in almost linear time, In
Symposium on Principles of Programming Languages (POPL),
pages 32–41,1996.

[5] A. Salcianu and M. Rinard, Pointer and escape analysis for
multithreaded programs. ACM SIGPLAN Notices, 36(7):23, 2001.

[6] Manu Sridharan and Rastislav Bodik, Refinement-based context-
sensitive points-to analysis for java. SIGPLAN Not., 41(6):387-400,
2006.

[7] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools (2nd Edition).
Addison Wesley, August 2006.

[8] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proc. PLDI, pages 1–12, La
Jolla, CA, June 1995.

[9] Susan Horwitz, Precise flow-insensitive may-alias analysis is np-
hard, Transactions on Programming Languages and Systems,
19(1):1–6, 1997. ISSN 0164-0925.

[10] Michael Hind and Anthony Pioli. Assessing the effects of flow-
sensitivity on pointer alias analyses. In Proc. International Static
Analysis Symposium (SAS), pages 57–81, 1998.

[11] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodik.
Demand-driven points-to analysis for Java. In Richard P. Gabriel,
editor, Proc.20th OOPSLA, pages 59–76, San Diego, CA, October
2005. ISBN 1-59593-031-0.

Kanchan Arora / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 446-451

www.ijcsit.com 451

